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Synopsis
Explicit expressions are given for the ultrasonic absorbtion spectrum caused by several 

coupled chemical reactions. The expressions are exact within the theory of irreversible thermo
dynamics and are given in a form which makes it easy to calculate the relaxation spectrum for 
a given kinetic model from knowledge of the rate constants and normally used thermodynamic 
parameters. The article also suggests approximations in terms of one or a few relaxation times 
of the relaxation spectrum caused by several reactions.
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I. Introduction

The interpretation of relaxation experiments within the theory of irrevers
ible thermodynamics in the case of a single chemical degree of freedom has 
been treated very thoroughly in several places (see e.g. ref 1 ). When one 
wants to treat the possibility of more than a single chemical reaction, one 
normally makes at least one of the following approximations. Either one 
treats the coupling between the chemical reactions correctly but supposes 
that the concentrations are small so that the coupling between the chemical 
degrees of freedom and the physical degrees of freedom (p and T) cand be 
neglected (2). Or one supposes that the relaxation times for the different 
chemical reactions are separated so much that the coupling between the 
different chemical reactions can be neglected.

Only in one article (3) does it seem possible to find the correct treatment 
without other assumptions than the general assumptions of irreversible 
thermodynamics. This article, however, still leaves several questions open 
for the experimentalist, who wants to interpret his results in terms of a multi- 
step mechanism. The most important of these questions are:

1) How are the functions e and A in the general rate equation of irrevers
ible thermodynamics

= e(p,T,£)A(p,T,£) (1)
a t

transformed into normal kinetic parameters?

2) What is the connection between the kinetic and thermodynamic para
meters and the weight-factors of the different relaxation times? e.g. the A’s 
in the expression for the attenuation factor as a function of the frequency co:

CO2 j = 1 1 + (co T;)2

where the r’s are the relaxation times

3) If one makes one of the above-mentioned approximations, how large 
is then the error-term?

1*
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4) Is it possible to describe the results from measurements on multistep
mechanisms with one or two relaxation times and how will these parameters 
then be connected with the kinetic and thermodynamic parameters?

It is the purpose of this article to try to answer these questions. Expres
sions will be given explicitly for the frequency dependence of the attenuation 
factor in the case of ultrasonic absorption, but the general approach should 
equally well applicable to other types of relaxation measurements. The 
treatment given here is closely related to that of the Groot and Mazur (1) 
for a single chemical reaction to which one should refer for a more detailed 
explanation of the problems of irreversible thermodynamics.

II. The rate equations

The general reaction scheme for n different chemical reactions involving 
altogether m different chemical species, A1; A2, . . . Am, may be written:

rll ^1 + r12 -^2 + • • • + vlm Ml ^1 + r12 A2 + . . . + Vlm Am

Vtl ^1 + v22 ^2 + • • ' + v2m ^m^-V21 ^1 + v22 T, + . . . + V2m Am

vnm vnl "^1 vn2 ^2 + . . . + Vnm Am

where many of the coefficients, v+ and v~, of course, may be zero, since 
chemical reactions are normally either unimolecular of bi molecular.

The rate equations for the system (3) are most easily stated by first 
introducing a reaction parameter for each of the n reactions (z = , 2, . . , A7). 
£i measures the change in chemical composition from the time /() until the 
time t caused by the z’th reaction, such that the change in the number 
of moles of Ax from time t0 to time I caused by the first reaction will be 
(vfjL - r^) owing to the second reaction the change will be (ig) - v2i) 
and so on. Altogether the change in the number of moles of Ax from time /0 to 
time G will be equal to

n
æi = 2 <i)

i = 1
(4a)

Similar for the change in the number of moles of A2:

(4b) 
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etc. for Ag, A4, . . . Am. These and the following equations can be brought 
into a more convenient form by introducing a matrix notation:

(5)

(All vectors are supposed to be column vectors. Superscript T stands for 
transposing and consequently ÇT is a row vector)

(6)

^2»
G)

Vnm
4- (8)

With this notation the equations (4) read:

x = NT £. (9)

Note that knowledge of a given chemical composition al lime t0 and a 
given chemical composition at time t are not always sufficient information 
to determine the £j’s uniquely. The composition at time /0 together with the 
rate equations given below, however are always sufficient to determine the 
£/s uniquely.

Using ki for the forward and k-t for the backward rate constant for the 
z’th reaction (z = 1, 2 . . . , n), the normal rate equations for the system of 
chemical reactions (3) are:

1 z
V

(19)

1 d^n
V dt
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where V is the volume and Cj is the concentration in niolcs/liler of Aj(J = 1, 
2, . . . , /n). As defined by equation (10) the rate constants kt and k_i will 
in general depend not only on p and T but also on the concentrations. 
In order to get through with the calculations one will need some specific 
assumption about the dependence of the rate constants on the concentrations. 
It is common to just lake the simplest way out and assume that the rate 
constants are independent of the concentrations. This approximation, how
ever, has some less satisfactory consequences.

Equations (10) implies the equilibrium conditions:

or :

where Ki is the equilibrium constant for the z’th reaction. Writing pg for 
the chemical potential of the /’111 component and gt for the molar change 
in chemical potential due to the z’th reaction:

eqn (12) implies

m
9t = 2 rO /O’

J = 1

m v
9i = 9°i + RT In IT ci

7=1

.7? = -«Tin Af.

(13)

(14)

(15)

Since the number of moles can only change by the chemical reactions, the 
differential of the Gibbs’ free energy:

can be written:

m
dG = — S dT + V dp + 2 /O’ d-vi 

7=1

dG = -SdT + Vdp + 2 9id%i 
i = 1

and one consequently has the following Maxwell relation

^/p,T,<5-

(16)

(17)

(18)
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(19)
V

with

(20)

(21)

(22)

(23)

(24)-ÆTlnÆ*

where the index means that all other £’s are kept constant. Using eqn. 
(14) and the assumption that g1- depends only on p and T, eqn. (18) gives

Vij 
zi

vtj 
zi

dt

where it now is supposed that g® and ki and k-r only depend on p and T 
but are independent of the molar fractions. The rate equation (21) (respect
ively (10)) is different from the rate equation (1), which is the one normally 
used in irreversible thermodynamics. If one writes (21) as

9i

g°i =

rt

cental to zero, which solves the problem.ô£t)p,T,Ç~ 4
Here, however, we will prefer the more general solution which is obtained 

by using molar fractions in place of concentrations, and then in the end 
merely state the results for ç? only depending on p and T. With Zj for the 
molar fraction of the /’th component, v for the total number of moles and 
tildes on new parameters we gel the following equations in place of equations 
(10), (12), (14) and (15):

m
Ki - n

/ = 1

The implication of (19), namely that change in volume by the z’th reac
tion is proportional to the change in moles (d Vi) by the z”lh reaction with 
a proportionality factor, which does not depend on z, is of course fulfilled 
for the ideal gases, but seems less satisfactory for solutions. (Note that the 
problem only arises in case of more than one chemical reaction). In many 
cases it will of course be a reasonable approximation for solutions to put 
r
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77T = r ?? C1 “exP(^/7?7’)) 
dt

(25)

m vt 
n - n v

7 = 1
(26)

it is easily seen that the two equations become identical when one only keeps 
terms that are linear in the deviation from equilibrium, which is the normal 
approximation of irreversible thermodynamics.

Making this approximation one gets the rale equations:

dt

1 /àll\ 1 pv\
- - — ÔT-------- —RT2\ô RT

(i = 1, 2, 3, . . . , 77).

(27)

where we have chosen the reference time, /0, to correspond to the equili
brium state at the pressure p and the temperature T, so that £ and x measure 
deviations from this equilibrium state, while the deviation on other variables 
from this reference stale is designated by a ô.

In matrix notation the equations (27) read:

(vvT - NZ-AN'r)^ (28)

where we have introduced the following vectors and matrices:

= {1, 1, 1, . . . , 1} (32)
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G =

0 0 0... yn

Zi 0 0 . . . 0

0 z2 0 . . . 0

0 0 r3 . . . 0

0 0 0 . . .

(33)

(34)

In many cases it will be useful to reduce the number of chemical variables 
to a minimum. This is attained by reducing the number of rows in N. In 
general the rows of N will not be linearly independent, but it can of course 
always be arranged that the first n rows are independent and that the 
remaining n-n rows can be written as linear combinations of the first n 
rows. With N’ for the matrix consisting of the first n row of N, this means that

N=BN (35)

where B is nxii matrix, whose first n’ rows are identical with the n’xn’ 
identity matrix. According to the definition n is equal to the rank of N. 
Since it follows from the conservation of mass, that there exists at least one 
linear relation between the columns of N the following restriction on n is 
evident

n < m - 1. (36)

Using y for the n’-dimensional vector, whose elements are the new, inde
pendent chemical variables (9) is changed to:

x = N'Ty (37)

y, = BT£. (38)

Note that y is not just the first n elements of £. (It is of course possible 
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to choose other basic sets of variables than y by substituting D for y, 
BD for B and D}N for N' where D is any non-singular n'xii matrix).

The physical interpretation of the reduction from the variables £ to the 
variables y is, that the first n’ reactions in (3) are really independent while 
the remaining reactions can be written as linear combinations of the first 
n reactions. This means that if h’, v' and v' are n dimensional vectors 
whose components are the first «’components of h, v, and v respectively, 
then one has the relations

h = Bh' (39)

v = Bv (40)

v = Bv'. (41)

The similar equation for the g^'s gives that chemical equilibrium is 
determined by the first n equations of (22), and that the remaining ii-n' 
equations automatically are fulfilled, if the first n’ are fulfilled.

The final form of the rate equation then becomes:

with

y G -V ÔTh - V Ôpv'-(N' Z-1N"r-v,v'T)y
BT2 BT 7 (42)

G 2 = B1 GB (43)

III. The attenuation factor

In order to find the attenuation factor at the frequency w one has primarily 
bp . . .to find at constant entropy under the assumption that the deviations of 

the variables vary harmonically with time with the frequency co. The condi
tion of the entropy being constant is attained by introducing the additional 
equations

rC® 1 ,
AS = — ÔT - VI ôp + Th Ty = 0 (44)

where we have used that at equilibrium (gi = 0): 

/&S\
\^)p,T,^

'n
T\ & ) p,T,£~

(45)
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Here Cp an I are the molar heat capacity and the coefficient of thermal
expansion respectively:

v \0T!
(46)

z = ipj .
v\ôTh^ (47)

The assumption of harmonic variation with lime has only influence on the 
equations through the time derivatives:

gives
y

y = icoy.

(48)

(49)

Finally we shall need the equation of state, which we write as

ÔV = VIÔT - VßT ôp + ÿTy (50)

where ßr is the isothermal compressibility

(51)

Using eqn. (49) the equations (42), (44) and (50) are now fairly easily
<5V

solved for — / . . • • ^p\I which gives neater expressions than solving for I

E denotes the identity matrix and A' the matrix

5 V
fT G (A + ia>E)~lGfCp RT v (52)

where we have used
Z2 V

Cv = Cp - T-------
ßr v

(53)

and furthermore introduced the vector

, , Vl , f = v — h .
vCp

(54)
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À' = G'In'Z^N’t-tv't + —— h'h'T]G'. 
\ CPRT2 I (55)

The matrix G needs some comments, since in equation (43) we have 
only defined G'2 . G'2 is obviously a symmetric, positive semidefinite matrix 
and from the definition of B it can be seen that G'2 is even positive definite. 
Hence we have no difficulties in defining the square root as a matrix, which 
is also symmetric and positive definite.

Since A' is positive definite, A' has positive eigenvalues. W riting xx(co) for 
.the real part and x2(co) for the imaginary part of —, we have

dp

(56)

(57)

where çq is the/'th component of the vector cp'. With M as the matrix whose 
columns are the eigenvectors of A' (in the same order as the eigenvalues), 
(p is given by

<p = M'TGf. (58)

The general
p. 325)

formula for the attenuation factor a, now reads (see ref. 1,

a Xi(co) + |/xx(co)2 + z2(co)2 (59)

This may be simplified, if

since one then has

1
j = i

VßT C v R R
Cpv

l«2(w) I < < l*i(œ) I

for all values of co. Using this and the expression

c = l/(ø xx(co))

(60)

(61)

(62)

for the velocity of sound, which is valid in the same approximation (sec 
ref. 1, p. 326), one gets
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, cd2 Cpv q)i
a = i---------- —— 2 -y -y- (63)

2 c VßT('vKT ; = UJ + æ2

The approximation (60) is equivalent to the assumption that the relative 
variation in the velocity of sound is small, as may be seen from (62). The 
problem of finding the attenuation factor as a function of frequency for a 
given kinetic model is now reduced to finding the square root of one matrix 
and diagonalizing another. These operations are easily carried on numeric
ally, but in general case they are are hard to handle theoretically. For 
theoretical calculations it may therefore be advantageous to leave out the 
reduction of the number of chemical variables introduced in the equations 
(35) and (37)-(41). If this is done, one gets in place of À' a matrix À, which 
has the same eigenvalues as Ä', and further n-n’ eigenvalues equal to zero. 
It can, however, easily be proved that the weight factors, çy;2, corresponding 
to these eigenvalues are zero.

IV. Approximations

From the expressions given above (for example eq. (52) or (63)) it is 
in general not difficult to evaluate the implications of different types of 
approximations. This can normally be attained by application of relatively 
uncomplicated parts of the theory of matrices.

Neglecting the coupling between chemical and physical degrees of free
dom corresponds to neglecting the term

----------Gh'hTG'
CpRT2

in eq. (55). If the new eigenvalues are related to the eigenvalues of A' 
(given by eq. (55)) by

2/ = Ay - £;, ,/ = 1,2,..., n (64)

then one has for the errors, £;:

£y > 0 /
11

nf

J = 1

1
Cp/?T2

A'TG'2A.
(65)
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If lhe reactions can be separated in two groups, such that reaction rates 
are much larger in the first group than in the second, then it is generally 
possible to separate them by a perturbation expansion. One should, however, 
be aware of the possibility that a large number of coupled reactions with 
approximatively equal rates may give rise to relaxation in a much wider 
frequency range due to the coupling between lhe reactions as can be seen 
from example 2 below.

If one wants to approximate a multistep mechanism with a spectrum 
corresponding to a few relaxation times then one might think of several 
possible methods. In lhe appendix is outlined a method for approximating 
an //-step mechanism with k relaxation times. This method has the adavant- 
age that it only involves calculating moments of the matrix À with the 
vector f which makes it especially suited for calculations in closed form. 
As pointed out in the appendix it is, however, less suited for numerical 
calculations and one might ask whether one could not find approximations 
which would be more useful for numerical calculation. The answer to this 
is that the numerical work connected with diagonalization of the matrix À 
in general will be of the same order of magnitude as the work connected 
with calculation of the approximation and that consequently it would be 
rather akward to use such an approximation in place of calculation of the 
exact expression.

We shall stale the formulas for one and two relaxation times explicitly 
in order to facilitate the use of the method. Since there is no need for lhe 
reduction of the number of chemical variables, we leave it out and introduce 
the matrix

Æ = I NZ-1^ - +---------hhT\. (66)
\ CpRT2 ! V 7

W illi lhe notation of the appendix we now find:

^1=fTG2f (67)

= (JT&KG2/)^ I
(68) 

= (f'rG2NZ-1N'rG2f-(fTG2v)2 + (fTG2h)2l(CpRT2))l7t1 |

= fTG2KG2KG2f-ô2^ (69)

d2 = (fT(G2K)3G2f-201fT(G2K)2G2f+031^1)l7i2. (70)

The first order approximation for the attenuation factor then becomes:
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j co2 CPv
7 c VßTCvRT Ô2 + co2

with the relative error:
ei = ^2/(^i ôi)

(71)

(72)

while the second order approximation may be written

(73)

V. An alternative set of formulas

If one wants the formulas with concentrations in place of molar fractions, 
then one has the rate equations (10) and the equilibrium condition (12). 
We will write the condition (19) as

1
v = 7/V. (74)

Where 7/ is a function of p, T, £ (for- ideal gases one has 7/ = 1/v). The 
linearized rale equation then reads:

N'C~'NT)y (75)

with the following definitions

cx 0 0 . . . 0

0 c2 0 . . . 0

0 00... cm

G 2 = B' G B

(76)

(77)
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yr O O ... O

O y2 O . . . O

O O y3 . . . O
(78)

O O O . . . yn

771 p .

yj = Il cfc ’*•  (79)
Ä:= 1

The only changes in the formulas for the attenuation factor are that G 
is replaced by G', A is replaced by

A’ = G'\n’C^N't - Vnv'v'T +-----— h'h'T]G' (80)
\ 1 vCpRT2 I

v is replaced by V, and the formula for/' alternatively may be written:

(81)

Leaving out the tildes on the new z’s and çp’s formula (63) reads:

1 W2 £p y
2 c ßrCvRT^^ + M2’ (82)

Similar changes 
formulas (66)-(73).

should of course be introduced in the approximation

VI. Examples

Three examples will be given below to show the application of the for
mulas and to illustrate some important implications of the theory. In the 
examples the formulas with concentrations will be used (eqs. 74-82)). The 
parameter introduced in equation (74) will be put equal to zero.
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Example 1

Consider the two chemically independent reactions

One then has lor the vectors and matrices :

712 — ?22 — ^2C3

(84)

hT = {/fl) h2}

jÅ-1 + Å'_1 + tr12, .^rr2 j
I ^\..r2 ,å'2 + å_2 + ^22J 

with :
'^i = yihx j/I7(pû’p/?7’2)

'^2 = y2^2 ÿ Vl(vCpRT2)

The eigenvalues ol' A become:

H ■ + v ± l'<v-w

^1° = ^1 + A’-x +
Â2° = Å'2 + Å'_2 +-jf22.

(86)

(87)

> (88)

(89)

! (90)

It is seen that the eigenvalues corresponding to two reactions (7° and Â®) 
are perturbed even though the two reactions are chemically independent. 
This effect is important if one uses a solvent with a relaxation time near the 
relaxation time of the solute one is investigating. It will normally not be 
correct merely to substract the background in that case.

The maximal effect is obtained with

In this case one gets:
V = l2o = /o.

;.x = z° + \.jr2
Â2 = z° -

2Mat.Fys.Medd. Dan.Vid.Selsk. 38, no. 11.
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9T2 = 7< Wtcp))2(7T71i + 72712)2
9’22 = 7(V//(vCp))2(y1Å1 - y2/j2)2.

The formula for </ for a single reaction is

<?2 = (V//(vCp))2(y/i)2. (95)

The value of a/co2 found if one substracts the background (only the first 
reaction) from the measured value with both reactions is then, aside from 
a constant factor, given by

a
2 CO

1
<x1+.;r2)2 (y\ --.r2)2

Z22 + co2
(96)

while the correct value corresponding to the second reaction is

(97)
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Example 2

Consider the polymerization scheme:

A1 + A $ zA A t + J i = 1, 2, . . . (98)

If it is assumed that all reactions have the same equilibrium constant, 
K, the same rate constants, Å+ and k~, and the same change in enthalpy, 
Zl H, then one has

(99)

(109)

(101)

(102)

rp- — - Ôjq - Ôj,i + + ! (103)

an = ytVi [<i_ 1 (<57-,i + ôi,x + 1 + J^2)

+ ((‘i 1 + Ctf+i 1) ~ 1 — 0i,j + iCi

= å'-[C’ + +1 +.r2)
+ (C + 1) ~ (^»y+i + ^i+i>y)

(104)

AT2 = cr V-AH^vCpRT^ (105)

where is the Kronecker delta.
Applying the approximation method of the appendix one finds:

= À-c1(zlH-V-//(rCp))2 2
J = 1

= A-c1(AH-V-//(rCp))2C/(Z-C) 

dq = (1 + C + (1 + Jf2)C/(l -£))•*-

%2 = %XC/(1 - 0 

ô2 = À-(l + 0.

(106)

(107)

(108)

(109)

Fig. 2 and 3 show for two values of £ the approximations with one and 
two relaxation times together with the exact curve (calculated by diagonal
izing a sufficiently large submatrix of A). The calculated eigenvalues are 
also shown. It is seen that the eigenvalue spectrum gets rather broad for £ 
close to one and that the approximations at the same time get less satisfactory. 
The calculations for £ close to one show an interesting consequence of the 

2*
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Figure 2 shows a/co2 as a function of log (<o) for the reaction scheme given in example 2 with 
£ = 0.01 and = 0.001 (--------- ). Also shown is the approximation with a single relaxation
time given by eqs. (71, 106, 107) (------ ). The approximation with two relaxation times cannot

be distinguished from the correct curve.

Figure 3 shows a/co2 as a function of log (oj) for the reaction scheme given in example 2 with 
Ç = 0.8 and J^2 = 0.1 (--------- ). Also shown is the approximation with two relaxation times,
given by eqs. (73, 106-109) (------------ ). The approximation with one relaxation time cannot

be distinguished from the abscisse axis.
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Table 1.

Table I shows that the large contributions to (a/co2) co = o come from small eigenvalues 
although the corresponding values of (pf are small = oo)- The numbers are taken from a 31 x 31 

matrix corresponding to the model in example 2 with £ = 0.8 and = 0.1.

eigenvalue(s)
Contribution to

«co = X (a/co2) w = o

0.03 0.006 6.554
0.07 0.011 2.490
0.12 0.017 1.136
0.19 0.019 0.539

0.20-0.80 0.121 0.675
0.80-2.00 0.159 0.101
2.00-3.60 0.115 0.017

6.99 2.749 0.056

broad spectrum, which arises from the strong coupling between the single 
reactions. The value of a/co2 at co = 0 is often used to characterize the relaxa
tion curve. This is, however, not a very suitable parameter since small 
changes in the kinetic model may give rise to a large change in (a/co2)co = o- 
The largest contributions to (a/co2)co = o will normally come from small 
eigenvalues even if the corresponding values of q>j2 are small, but if Gf only 
has a small component after a given eigenvector then it is very likely that 
small changes in A or G or/ may result in a large, relative change in the 
component.

That the largest contribution to (a/æ2)æ = 0 actually comes from small 
eigenvalues with small weights in the present case is clearly exhibited in 
Table I.

In view of the proceeding remarks it is not surprising that the effect of 
leaving oid the term J^2 in eq. (104) is large for £ close to one as can be seen 
from Fig. 4.

Example 3

Finally an example to illustrate the reduction in case of chemical reac
tions which are not all independent is given. For this purpose example 2 
is expanded to include all possible combinations of two molecules to one 
large, but only reactions up to formation of 5-mers are included in order 
to get a reasonable simple problem.
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Figure 4 shows a/co2 as a function of log (co) for the reaction scheme given in example 2 with 
£ = 0.8 and x2 = 0.1 (--------- ) and £ = 0.8 and x2 = 0 (-------).

The reactions are:
Ar + Ai a2

Ai + a2 --A3

Ai + a3 -A4

Ai + A4 ^a5

A 2 + a2 a4

A 2 + a3 a3.
The matrix N becomes:

_ 2, 1, o, o, 0

- 1, -1, 1, o, 0

- 1, o, -1, 1, 0
N =

-1, o, o, - 1, 1

0, _ 2, o, 1, 0

0, - 1, -1, 0, 1
and the vector h:

(110)

(111)

(112)

The two last reactions in (HO) can evidently be written as a combination 
of the first four reactions. The matrix B is



Nr. 11 23

1 0 0 0

0 1 0 0

0 0 1 0
B =

0 0 0 1

-1 1 1 0

-1 0 1 1

(113)

while the matrix N' is identical with the first four rows of N, and the vector 
h is identical with the first four elements of h. One has the thermodynamic 
relations :

z1//5 = -AHr + AH2 + JW3

zlH6 = - AH1 + AH3 + zlH4

A 5 = ^2^3 I

A); = A3 A41 Kl.

The matrix G 2 becomes

y? + n2 + K2. - n2 , - n2 - n2 , - n2 

-y52 ,y22 + 75a. n2 . o

-n2-y«2 , n2 Jy32 + 752 + 7e2, 7e2

-n2 , 0 , y62 ,742 + y62

(114)
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Appendix

The problem is to find a series of approximations to an expression of 
the form 

yV(A + icoE)-^ (A. 1)

where ip is an n-dimensional vector and A is an nxn-matrix.



24 Nr. 1 1

The similarity transformation:

We shall start by transforming A into a traditional matrix by Lanczo’s 
algorithm for tridiagonalization (see ref. 4, p. 19). WTe generate two sequences
of vectors

61,62, .... bn (A. 2)

• • • > cn (A. 3)
which fulfils:

b ■ = b ■ -tt ■ 0 (A- 4)

and where the first v is determined by (yx = 0):

ci = bi = ip (A. 5)

bj + 1 = Abj - ôjbj - yjbj-1 (A- 6)

CJ+1 = AHci - Ô*j cj-W-1 (./ = ]> 2’ • ■ . ,r-D (A. 7)

(*stands  for complex conjugate), v is determined as the lowest value for 
which it is possible to get at least one of the following equations fulfilled

Abr = bvbr + (A. 8)

^4 Cy byCy + (A. 9)

The remaining n—v vectors b and c can be chosen to 
that (A. 4) is fullfilled for all i and j.

be any vectors such

ôj = c^j Abj/7tj, j >l (A. 10)

7; = ^7^-1. J>2. (A- 11)

W’ilh B and C as the matrices

B = {bx,b2, . . . ,bn} (A. 12)

C = \c1,c2, . . . , Cn} (A. 13)

and P as the diagonal matrix whose diagonal elements 
may be written

are the .-r/s, (A. 4)

B 1 = P~W (A. 14)

P 'lC»AB = A' (A. 15)
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will transform (1) into:
ef(A' + icoE) (A. 16)

ef = {1, 0, 0, . . . , 0}.
I f A ’ is partitioned:

A, = Mn^ial 
|^21 ^422f

Where A1X is vxv, one has
<*i 72 0 . . . 0

1 d2 73 0

= <

0 1 ^3 0

(A. 17)

(A. 18)

(A. 19)

0 0 0 bv

while either J12 or J21 is zero depending on whether (A. 9) or (A. 8) is 
fulfilled. (A. 16) is consequently reduced to:

ef(A11 + iwE) 1e1-7T1 (A. 20)

We will now return to the original problem. This may be viewed as the 
problem of finding approximate solutions to the equation:

(A + ia>E)x = ip. (A- 21)

A series of successive approximations to x can be obtain by using the 
residual of the preceding approximation to determine the next approxima
tion. This gives the general recursion formula:

x/c = Xfc_! + CkCip - (A + ia>E)xk-i). (A. 22)

(se ref. 4, p. 92 IL), where the matrices Ck should be chosen so that the 
“error” is minimalized. The error on Xk is given by:

x - Xk = Sk = (E - Ck(A + zco£))sa--i- (A. 23)

If one starts the sequence (A. 22) with

One gets:
x0 = 0

Sk

k
JJ (E - Cj(A + ia> E ))

J = i
x.

(A- 24)

(A. 25)
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Since we want to find ipn x, it will be reasonable to try to minimize 
ipH sk, or since x is not known

*

V7/ II <E ~ ci ( A + io> E ) ) xk
7=1

(A. 26)

We now have to choose the form of our matrices, C, (/ = 1,2... Â), and 
we choose them as simple as possible:

Q = -£. (A. 27)

From the recursion formula (A. 22) and the initializing (A. 24), it is 
easily seen that (A. 26) only depends on A + io>E and xp through the moments

//j = xpH(A t- iatEyxp (J = 0,1, . . . , 2Zr — 1). (A. 28)

Using now the expression (A. 20), one has from the special form (A. 19) 
of Allt that the moments

/q = ef(A11 + ia)E)jel (/ = 0,1,..., 2Å - 1) (A. 29)

are the same as they are for the matrix A^ + iwE, where we have only 
kept the first k columns and rows of An + ioE.

The approximation xk will be exact for the equation:

(A'Q + ia>E)x = er (A. 30)
if we make the choice

^ = /^} + i(D (A. 31)

where 2^ is the j'th eigenvalue of A{^. And we consequently have that 
the same choice make the expression (A. 26) for the error equal to zero. 
The Å?th order approximation to (A. 1) can now be written

* a(^
xpH(A + iojE^xp-T^ 2

; = i + ia>
(A. 32)

ocW is the product of the first component of the /'th eigenvector to A{$ 
from the right with the first component of the J'th eigenvector to A^ from 
the left.

It is, however, possible to give (A. 32) a form which is more convenient
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for many purposes. Writing Dj for the determinant of v-j last row and 
columns of A^ + icoE, one has

This continued fraction can be transformed into a sum of fractions (ref. 5 
p. 5):

(A. 34)

with the Q’s given by the recursion formula

Qj = (ôj + ico) Q;-! - yjQj-2

Q-i = 0,Qo = 1
< (A. 35)

The A’th order approximation (A. 32) will be identical with the first 
k terms of (A. 35). In order to estimate the error on the A’th approximation 
one can of course not use (A. 26). If one supposes that the following terms 
drop off reasonable fast one may use the A H-1 ’th term in (A. 34) for estimating 
the error. A rough estimate of Qj in the range of co which is of interest may 
be found by assuming that all the <5’s are of the same order of magnitude 
as co (and that the y’s do not blow up):

(A. 36)

which gives for the relative error on the A’th approximation

(A. 37)

Applicability of the method: Obviously the method applies to any expression 
of the form

+ /’(ft>)^)-1y (A. 38)

where f(co) is a complex function. This might be used to find other similar 
approximations to the expression (A. 1), since one can rewrite (A. 1) as
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Re {ipH(A + ico Ef^ip} =

(A%ip)H(A2 + w'~E 1 (Ay)

(A. 40)
Im{ipH(A iw E 1 ip} =

— coipH(A~ + co2Zj)_1y>

ipll(A + i(oE)~Aip =

(A -]2ip)H(A~l - (z7co)J?)_1(^4_2y’).
(A. 41)

The method of tridiagonalization can easily be generalized to expressions 
of the form

yiH (A + f(oj)E)~1qp (A. 42)

where ip and qp any two n-dimensional vectors which are not orthogonal, 
i.e. :

ipH(p^O (A. 43)

However, one warning should be given: Lanczo’s method of tridiagon
alization is in general not numerically stable, and the method should con
sequently in connection with numerical calculations only be used for cal
culating approximations of low order (k = 1 or 2).
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